
Manipulation Task Simulation using ROS and Gazebo

Wei Qian, Zeyang Xia∗, Jing Xiong, Yangzhou Gan∗, Yangchao Guo,

Shaokui Weng, Hao Deng, Ying Hu, Jianwei Zhang

Abstract— This paper intends to create a simulation of ma-
nipulator and illustrates the methods of how to implement robot
control in a short time. Here we complete the grasp and place
mission using Gazebo virtual world and Robot Operating System
(ROS). ROS is a distributed framework that is widely used
in robotics. Considering the advantages of its easier hardware
abstraction and code reuse, ROS was chosen to rapidly organize
task architecture and, due to its compatibility with ROS, Gazebo
was chosen as the main platform to simulate the designated
motion of virtual manipulator.

I. INTRODUCTION

Simulators have played a critical role in robotics research

for quick and efficient testing of new concepts, strategies, and

algorithms. A robotics simulator is used to create embedded

applications for a robot without depending physically on the

actual machine, which saves cost and time. In some case,

these applications can be transferred on the real robot without

modifications [1].

In the past couple of years, several robot simulators have

been developed with different main focus on complexity,

accuracy, and flexibility. There are also differences in the

possibility of creating and integrating own robot models and

virtual environments. Some of the simulators are restricted

to a two dimensional environment or are only approximating

dynamics and realistic interaction of the robots with the

environment.

Robot Operating System (ROS) [2] is packaged libraries and

tools to help create robot applications. There are numerous

contributions from around the world. Gazebo [3] is the 3D

simulation that is part of the Player [4] Project. Gazebo is

designed to accurately reproduce the dynamic environments a

robot may encounter. There are some famous robots simulated

in ROS and Gazebo platform, such as PR2, Care-O-bot,

TurtleBot, etc. In this case, we can draw a conclusion that

Gazebo simulator based on ROS is a powerful tool for robot

simulation. However, there are some difficulties to make the

simulator do what we want, especially for beginners. This

This research was supported by National Science Foundation of China (No.
51305436), Shenzhen High-level Oversea Talent Program (Peacock Plan) (No.
KQCX20130628112914284).

W. Qian is with Harbin Institute of Technology Shenzhen Graduate School,
and Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, and The Chinese University of Hong Kong. Z. Xia, Y. Gan,
Y. Guo, S. Weng, H. Deng and Y. Hu are with Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences, and The Chinese
University of Hong Kong, China. J. Xiong is with Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences. J. Zhang is with TAMS,
Department of Informatics, University of Hamburg, Germany.

*Author to whom correspondence should be addressed. Email:
{zy.xia, yz.gan}@siat.ac.cn; Phone: +86-755-8639
2181

paper is aimed to present the idea that how to easily understand

and make use of ROS and Gazebo.

Robot Manipulator simulation has been relatively matured

over the past two decades, however in order to model the

state of the art in robotics with new actuators and advanced

control algorithms as well as realistic physics, there is a need

to have improved simulation tools as evident by the Gazebo

project to develop a tool for DARPA [5]. On the other hand,

open source models and sharing the code is one of the most

important solutions to increase the interaction among robotic

research groups and to provide a common tool for testing

various algorithms on a single environment. OpenHRP [6], the

recent Gazebo and ROS projects are two of the latest projects

following this approach.

This paper is organized as follows: Section 2 describes the

general architecture of ROS and Gazebo, Section 3 shows how

to create a basic manipulator model to simulate. Section 4

depicts the operation in Gazebo and the implementation of a

simulating experiment. The paper ends with the conclusion in

Section 5.

II. ARCHITECTURE

The philosophy of ROS is to make a piece of software that

could work in other robots by making little changes in the

code [7]. There are some significant terms specified in ROS we

have reasons to know first. ROS is based on nodes, messages,

topics, and services.

The ROS Master is the core of ROS since it provides name

registration and lookup to the rest of the Computation Graph.

You can take it as an on-off switch of electrical equipment.

Without the Master, nodes would not be able to find each

other, exchange messages, or invoke services. In ROS, all

major functionality is broken up into a number of chunks that

communicate with each other using messages. Each chunk

is called a node and typically runs as a separate process.

Nodes communicate with each other by passing messages. A

message is simply a data structure, comprising typed fields.

Standard primitive types (integer, floating point, boolean, etc.)

are supported, as are arrays of primitive types.A node sends

out a message by publishing it to a given topic. The topic is

a name that is used to identify the content of the message. A

node that is interested in a certain kind of data will subscribe

to the appropriate topic. There may be multiple concurrent

publishers and subscribers for a single topic, and a single node

may publish or subscribe to multiple topics. Request/reply is

done via services, which are defined by a pair of message

structures: one for the request and the other for the reply. A

providing node offers a service under a name and a client uses

the service by sending the request message and awaiting the

978-1-4799-7397-2/14/$31.00 © 2014 IEEE 2594

Proceedings of the 2014 IEEE
International Conference on Robotics and Biomimetics

December 5-10, 2014, Bali, Indonesia

reply. ROS client libraries generally present this interaction to

the programmer as if it were a remote procedure call.

In addition, ROS provides enough tools for data process and

analysis like 3D visualization (RViz), logging real-time robot

experiments and playing them offline with (rosbag/rxbag),

plotting data (rxplot) and visualizing the entire ROS network

structure (rxgraph).

Gazebo simulator can be divided into libraries for physics

simulation, rendering, user interface, communication, and

sensor generation. Gazebo can simulate robot in a three-

dimensional world. It generates both realistic sensor feedback

and physically plausible interactions between objects (it in-

cludes an accurate simulation of rigid-body physics).

Although Gazebo has been an independent system that

stands alone outside of ROS in the latest ROS version, we

can also make it work as a node that simulates robot motion

and exchanges data with other nodes.

III. MANIPULATOR MODELING

The Unified Robot Description Format (URDF) [8] is an

XML specification to describe a robot. URDF files is used to

record the whole information of a virtual robot. It’s common

to create robot model by Computer Aided Design (CAD) tools

such as Solidworks, Pro-engineer, Blender, etc. However, there

must exist a transformation from CAD model to URDF robot

description model.

The basic structure of a robot is always divided into links

and joints no matter how complex the robot is (i.e. Fig. 1).

Fig. 1. Connection of two links by one revolute joint. Every link has its
frame which cannot be transformed after exported from CAD model. The
joint frame can be transformed from parent frame, and child frame can also
be transformed from joint frame. The key point is to make all frames have a
correct spatial relationship.

In URDF robot description model,The whole elements

between tag <link> and tag </link> are the description of

one specified link, the same as joint description between tag

<joint> and tag </joint>.

STereoLithography (STL) [9] and Collada [10] files can be

imported as meshes into URDF. The recommended format for

best texture and color support is Collada files, though STL

files are also supported.

What we need to do is to make scattered links together.

Commonly, a joint is the connection of two different links.

And the two links can be divided into parent link and child

link. Since every link has its fixed own coordinate frame. The

transformation information from parent link to child link must

be filled into joint property block.

RViz is a extremely useful visualization tool of ROS which

can be used to display the topics communicated between

nodes. RViz has a Graphical User Interface (GUI) to allow

users to configure and modify robots.

Launching RViz node and other essential nodes to establish

a ROS network which can control the position of each joint

provides a simple method to check the joint connection

between links.

Here are some brief introduction about main active nodes

and topics transported between each other(i.e. Fig. 2).

Fig. 2. When we launch RViz, joint state publisher, robot state publisher
and RViz nodes(orange rectangle frames), topics named joint states and tf are
transported according to the arrow directions.

joint state publisher: This node reads the robot description

parameter and publishes all non-fixed joints’ information such

as position, velocity, acceleration, at a specified frequency.

It also provides a control GUI to set the joint position of

manipulators.

robot state publisher: This node subscribes to current joint

positions of the manipulators and publishes transform data of

coordinate frames attached to each link by the method called

forward kinematics.

tf: The tf library was designed to provide a standard way

to keep track of coordinate frames and transform data within

an entire system such that individual component users can be

confident that the data is in the coordinate frame that they want

without requiring knowledge of all the coordinate frames in

the system [11] .

IV. GAZEBO SIMULATION

Gazebo is a multi-robot simulator for outdoor environments.

Like Stage [12] (part of the Player project), it is capable

of simulating a population of robots, sensors and objects,

but does so in a three-dimensional world. It generates both

realistic sensor feedback and physically plausible interactions

between objects (it includes an accurate simulation of rigid-

body physics).

By realistically simulating robots and environments code

designed to operate a physical robot can be executed on

an artificial version. Numerous researchers have also used

2595

Gazebo to develop and run experiments solely in a simulated

environment. Controlled experimental setups can easily be

created in which subjects can interact with manipulators in

a realistic manner.
There is a big difference between RViz visualisation and

Gazebo simulation, the former one is used to display relative

position of links, but the later one can be regarded as a

experimental copy of real robot in virtual world.
A transmission is an element in a control pipeline that

transforms efforts/flow variables. Transmission-specific code

(not robot-specific) implementing bidirectional effort and flow

maps under a uniform interface shared across transmission

types. Gazebo controllers need the corresponding transmission

interface in URDF file. We can configure the effort controller

transmission of a joint named joint1 rapidly by the block of

code below.

1 <transmission name="tran1">

2 <type>transmission_interface/SimpleTransmission</type>

3 <joint name="joint1"/>

4 <actuator name="motor1">

5 <hardwareInterface>EffortJointInterface</

hardwareInterface>

6 <mechanicalReduction>1</mechanicalReduction>

7 </actuator>

8 </transmission>

In addition to the transmission tags, a Gazebo plugin needs

to be added to our URDF that actually parses the transmission

tags and loads the appropriate hardware interfaces and con-

troller manager. The gazebo ros control plugin is very simple,

though it is also extensible via additional plugin architecture to

create custom robot hardware interfaces between ros control

and Gazebo. Adding the block of code below to active

the gazebo ros control plugin to allow us to start a list of

controller manager services, which can be used to list, start,

stop or switch controllers.

1 <gazebo>

2 <plugin name="gazebo_ros_control" filename="

libgazebo_ros_control.so">

3 <robotNamespace>/MYROBOT</robotNamespace>

4 <robotSimType>gazebo_ros_control/DefaultRobotHWSim</

robotSimType>

5 </plugin>

6 </gazebo>

In order to let our manipulator work as we want, robot

controller is an essential part. Trajectory controller is a kind of

position tracking controller, it quintic algebra curves Making

use of the trajectory controller can be used as a controller

easily, we should load a YAML [13] configuration file that

corresponds with the joint trajectory controller. In the config-

uration file, we set the controller types, joint names and PID

parameters.

1 arm_controller:

2 type: "effort_controllers/JointTrajectoryController"

3 joints:

4 - joint1

5 constraints:

6 goal_time: 5.0

7 joint1:

8 goal: 0.05

9 trajectory: 0.05

The code above set the controller’s type, joint name and

some constrains, such as

When the joint trajectory controller is launched and run-

ning, there are two ways can be used to publish commands to

control the joints (i.e. Fig. 3).

Fig. 3. There are two methods to command the trajectory controller
inside Gazebo simulator. Directly command message from the terminal is
a simple way to control our robot. The other method is to use action client
to communicate with action server so as to command the controller.

The first method is simply open a terminal to send a

specified-format topic to the joints. In this way, we can do

some simple tasks, for example, send a simple instruction to

home all the joints to initial position. The command below

is intended to initialize my 7DOF virtual mechanical arm in

three seconds.

1 $ r o s t o p i c pub / a r m c o n t r o l l e r / command t r a j e c t o r y m s g s /
J o i n t T r a j e c t o r y ’{ j o i n t n a m e s : [’ j o i n t 1 ’ , ’ j o i n t 2 ’ , ’
j o i n t 3 ’ , ’ j o i n t 4 ’ , ’ j o i n t 5 ’ , ’ j o i n t 6 ’ , ’ j o i n t 7 ’] ,
p o i n t s : [{ p o s i t i o n s : [0 , 0 , 0 , 0 , 0 , 0 , 0] , t i m e f r o m s t a r t
: { s e c s : 3}}]} ’

The other method is to create a specified action client to

communicate with action server which has been capsuled into

trajectory controllers (i.e. Fig. 4).

Fig. 4. Topics Communicated between action client and action server. This
mechanism allows task preemption and process feedback.

The actionlib[15] package provides tools to create servers

that execute long-running goals which can be preempted. It

also provides a action client in order to send requests to the

server.
We need to define action messages to connect action client

and server. An action specification defines the Goal, Feedback,

and Result messages with which clients and servers commu-

nicate:

2596

Fig. 5. The whole process of the task pouring out a red ball from the pale green cup. First figure shows the beginning preparation and scenario. The next
shows the robot arm moved to the pre-grasp position, then the three fingers dexterous hand close and lift the cup up to defined height to pour the small ball.
Manipulator rotates the end link of arm to make the cup overturn. We can see that the red ball was poured out from the blue cup. Completing this task only
need no more than one minute that a little longer than operating by human hand.

Goal: To accomplish tasks using actions, we introduce the

notion of a goal that can be sent to an Action Server by an

Action Client.

Feedback: Feedback provides server implementers a way

to tell an Action Client about the incremental progress of a

goal.

Result: A result is sent from the Action Server to the Action

Client upon completion of the goal. This is different than

feedback, since it is sent exactly once.

By Making use of the actionlib package, we can establish

specified ROS network to implement simple task easily. Tra-

jectory action client send specified goal to action server, com-

monly called FollowJointTrajectoryGoal. If we have knew the

waypoints’ postions, velocities ,accelerations, we can create

a goal containing all the information about final robot state.

The function called toMsg below is used to convert desired

joint position to specified goal for action client to send to

Server(Here we create several static waypoints since their

velocities are equal to zero).

1 / / F u n c t i o n us ed t o c o n v e r t d e s i r e d j o i n t p o s i t i o n t o
s p e c i f i e d g o a l .

2 c o n t r o l m s g s : : F o l l o w J o i n t T r a j e c t o r y G o a l toMsg (c o n s t Eigen
: : VectorXd& j o i n t)

3 {
4 c o n t r o l m s g s : : F o l l o w J o i n t T r a j e c t o r y G o a l g o a l ;
5

6 g o a l . t r a j e c t o r y . j o i n t n a m e s . pus h back (” j o i n t 1 ”) ;
7 g o a l . t r a j e c t o r y . j o i n t n a m e s . pus h back (” j o i n t 2 ”) ;
8 g o a l . t r a j e c t o r y . j o i n t n a m e s . pus h back (” j o i n t 3 ”) ;
9 g o a l . t r a j e c t o r y . j o i n t n a m e s . pus h back (” j o i n t 4 ”) ;

10 g o a l . t r a j e c t o r y . j o i n t n a m e s . pus h back (” j o i n t 5 ”) ;
11 g o a l . t r a j e c t o r y . j o i n t n a m e s . pus h back (” j o i n t 6 ”) ;

12 g o a l . t r a j e c t o r y . j o i n t n a m e s . pus h back (” j o i n t 7 ”) ;
13

14 g o a l . t r a j e c t o r y . p o i n t s . r e s i z e (1) ;
15 g o a l . t r a j e c t o r y . p o i n t s [0] . p o s i t i o n s . r e s i z e (7) ;
16

17 f o r (u n s i g n e d i n t i =0 ; i <7; ++ i)
18 g o a l . t r a j e c t o r y . p o i n t s [0] . p o s i t i o n s [i] = j o i n t (i) ;
19

20 r e t u r n g o a l ;
21 }

We should create an action client to connect with a specified
name action server. The desired joint position can be got from
inverse kinematics, and then convert it into the form of ROS
goal msg. After that, action client sends goal to server and
waits for the result of the whole sub process. Part of the C++
code is displayed below.

1 t y p e d e f a c t i o n l i b : : S i m p l e A c t i o n C l i e n t<c o n t r o l m s g s : :
F o l l o w J o i n t T r a j e c t o r y A c t i o n > T r a j C l i e n t ;

2 / / C r e a t i n g a a c t i o n c l i e n t t o communicate wi th a c t i o n
s e r v e r named ” / a r m c o n t r o l l e r / f o l l o w j o i n t t r a j e c t o r y
” .

3 t r a j c l i e n t = new T r a j C l i e n t (” / a r m c o n t r o l l e r /
f o l l o w j o i n t t r a j e c t o r y ” , t r u e) ;

4

5 w h i l e (! t r a j c l i e n t −>w a i t F o r S e r v e r (r o s : : D u r a t i o n (5 . 0)))
6 {
7 ROS INFO (” Wai t ing f o r s e r v e r ”) ;
8 }
9

10 c o n t r o l m s g s : : F o l l o w J o i n t T r a j e c t o r y G o a l g o a l ;
11 / / Us ing Eigen l i n e a r a l g e b r a C++ t e m p l a t e l i b r a r y .
12 Eigen : : VectorXd j o i n t (7) ,
13 j o i n t <<0.0, 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ;
14 / / C o n v e r t i n g j o i n t p o s i t i o n t o g o a l t y p e
15 g o a l = toMsg (g o a l) ;
16 g o a l . t r a j e c t o r y . h e a d e r . s tamp = r o s : : Time : : now () ;
17

18 t r a j c l i e n t −>s endGoa l (g o a l) ;

2597

By recycling the sub process until completing task planning

can simulate many common tasks. The structure diagram

below(i.e. Fig. 6) can be regarded as a basic method to make

our virtual robot do what we want.

Fig. 6. Topics Communicated between action client and action server. This
mechanism allows task preemption and process feedback.

Here we want to use our virtual 7 DOF manipulator to

pour out a small ball from the cup on the desk nearby(i.e.

Fig. 5). This grasp and place task can be divided into five

parts, (a)move to pre-grasp position, (b)grasp the cup, (c)pour

out the object inside the cup, (d)place the cup, (e)move to

initial position. By setting a few trajectory waypoints which

dividing the whole process into several separate parts. Using

the method above, we merely need to do is computing the

grasp position and orientation and adding some blocks of

code. After compiling and debugging, our node worked as a

trajectory action client can communicate with trajectory action

server. The whole process is very steady and continuous and

we think the the second method can be taken as the first choice

to do complex task simulation.

CONCLUSION AND FUTURE WORKS

Gazebo simulator becomes a powerful tool when it’s worked

as a node in ROS environments. It is a relatively simple way

to simulate our robot to complete ordinary tasks in daily life.

As a result, the overall time spent in robotics research is

greatly reduced due to code reuse. Sometime, the process

of designing and building the hardware alone would have

consumed numerous months. However, Gazebo reduced the

time frame down to less than two months, during which

time both the physical structure and software were modified

and tested in parallel. Clearly, using of this feature allows

developers to easily move from basic concepts to real working

systems in a short period of time.

Since part of our work is based on the preliminary under-

standing of ROS and Gazebo, and what we want to do is

showing the methods of how to simulate our virtual manipu-

lator in a more effective way.

Further research is needed on the simulation of algorithm,

one of the main work will be motion planning algorithm sim-

ulation in cluttered environment. In addition, there are many

virtual sensors in Gazebo, such tactile sensor, force/torque

sensor, Kinect, etc, which can make manipulator grasp and

place more steadily, this is also part of our future research

contents.

REFERENCES

[1] C. Pizarro, Patricio, T.V. Arredondo, and M.T. Torriti, ”Introductory
Survey to Open-Source Mobile Robot Simulation Software.” Robotics

Symposium and Intelligent Robotic Meeting (LARS), 2010 Latin Amer-

ican. IEEE, 2010.
[2] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,

R. Wheeler and A. Ng, ”ROS: an open-source Robot Operating System,”
ICRA Workshop on Open Source Software, 2009.

[3] N. Koenig and A. Howard, ”Design and Use Paradigms for Gazebo,
An Open-source Multi-Robot Simulator,” in International Conference

on Intelligent Robots and Systems, Sendal, Japan, 2004.
[4] Online, 2013, IEEE Spectrum: DARPA awards simulation

software contract to open source robotics foundation, URL:
http://spectrum.ieee.org/automaton/robotics/robotics-software/darpa-
robotics-challenge-simulation-software-open-source-robotics-foundation

[5] B. P. Gerkey, R. T. Vaughan and A. Howard, ”The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems,” Proceedings of

the International Conference on Advanced Robotics (ICAR 2003), pp.
317-323, 2003.

[6] Online, 2013, OpenHRP Dynamic Simulator, URL:
http://www.openrtp.jp/openhrp3/en/index.html

[7] W. Garage, ROS: Robot Operating System, 2011[J]. URL: http://www.
ros. org/(ultimo acesso: 10/12/2011), 2011.

[8] L. Kunze , T. Roehm , M. Beetz, ”Towards semantic robot description
languages.” Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, 2011.

[9] Lee, K. H., H. Woo, and T. Suk, ”Data reduction methods for reverse
engineering.” The International Journal of Advanced Manufacturing

Technology 17.10 (2001): 735-743.
[10] Miyahara, Katsunori, and Y. Okada, ”COLLADA-based File Format

Supporting Various Attributes of Realistic Objects for VR Applications.”
Complex, Intelligent and Software Intensive Systems, 2009. CISIS’09.

International Conference on. IEEE, 2009.76.
[11] T. Foote, ”tf: The transform library.” Technologies for Practical Robot

Applications (TePRA), 2013 IEEE International Conference on. IEEE,
2013.

[12] R. Vaughan, ”Massively multi-robot simulation in stage.” Swarm Intel-
ligence 2.2-4 (2008): 189-208.

[13] V. Sinha, F. Doucet, C. Siska, R. Gupta, S. Liao, and A. Ghosh, ”YAML:
a tool for hardware design visualization and capture.” Proceedings of

the 13th international symposium on System synthesis. IEEE Computer

Society, 2000.
[14] R. Miller, ”Configuration management with Subversion, YAML and

Perl template toolkit.” Proceedings of the 5th International System

Administration and Network Engineering Conference SANE. Vol. 6.
2006.

[15] J. Bohren, S. Cousins, ”The SMACH high-level executive [ROS news].”
Robotics & Automation Magazine, IEEE 17.4 (2010): 18-20.

2598

